

1

WAAMMat Programme Overview

Professor Stewart Williams

January 2017

www.cranfield.ac.uk

- Cost savings compared to current manufacturing processes
- Lead time reduction compared to forgings
- Performance enhancement through
 - ➢Replacement of e.g. castings by higher performance materials
 - Weight savings by topological optimisation
 - ➢New materials
 - Mixed material systems

3

WAAM business driver – cost saving case studies - Bombardier rib

Design option	Mass (kg)	BTF	Cost (£k)	Cost red.
Original machined	20	12	16.2	-
WAAM + machining	20	2.3	5	69%

Design option	Mass (kg)	BTF	Cost (£k)	Cost red.
Original, machined	36	12	1.6	-
WAAM + machining	36	2.3	0.7	55%

WAAM systems - where we are aiming - HELP!

Aluminium:

- 14 months for forging
- 4 months for machining
- 90% waste

Titanium:

10 times worse
 problems

Worlds largest 3D printed (metal) part – 6 m long 300 kg aerospace grade aluminium spar

Cranfield Manufacturing

WAAM system developments – multi robot systems for parallel processing

WAAM – major technical challenges and activities

System development - CAD drawing to part

- Software and full automation
 - WAAMDesign
 - WAAMSoft
 - WAMMCtrl
 - WAAMAPIs
- <u>Hardware</u>
 - Process monitoring
 - Fault detection
 - Component cooling

<u>New materials and combinations</u>

- High strength aluminium alloys
- Superalloys
- Refractory metals
- Maraging steels
- In process NDT
- Qualification Q3

WAAMMat – Technical Programme Overview

Cranfield

Manufacturing

WAAMMat Programme – Cranfield team

WAAMMat Programme Partner Overview

WAAMMat Programme - Academic Partners

Institution	Lead investigator	Technical area	Resource
Manchester U	Phil Prangnell,	Materials Science and Modelling – Q3	1 x res, 1 x PhD
U of Nottingham	Steve Sharples	On-line grain size measurement	1 x res
IIT Bombay	Karunakaran	Integrated machining, peening	2 x PhD
Heriot Watt U	Andrew Moore	Flow visualisation, process monitoring	2 x PhD
NE University China	Yuchun Zhai	Aluminium wire development	
Open University	Sanjooram Paddea	Residual stress characterisation	1 X Res
Bath University	Stephen Newman	Process monitoring	1 x Res
Coventry University	Xiang Zhang	Fatigue and DT, effects of defects – Q3	1 x Res, 2 x PhD
Strathclyde University	Gareth Pierce	In-process NDT – Q3	1 xRes
Bristol University	Harry Coules	Fatigue and DT, effects of defects – Q3	1 x PhD
Surrey University		Aluminium wire quality – Q3	1 x PhD
Delft University	Ian Richardson	Thermal cycle simulations, microstructure – Q3	1 x PhD
IST	Luisa Quintino	NDT and design	2 x PhD
11 Academics + 18 researchers/students			

The Academics + 18 researchers/students

> 60 people in total working on WAAM

- WAAMMat is a rolling technology programme incorporating a wide range of projects and activities
 - Industry sponsored research
 - Projects funded by outside bodies (e.g. EU, EPSRC, TSB)
 - PhDs
 - Masters projects
 - Internally funded projects
- Currently 70 projects total value >£4.5M,

Industry
 EU
 UK National
 Other

WAAMMat Programme – Industry partner types

Partner Type	Rights	Requirements
Full	 Perpetual royalty free license to all foreground IP from the core programme whilst partners <u>Full access to detail of all research outputs in core projects</u> Access to background IP needed to exploit WAAM Member of industry advisory group 	 Sponsorship of research projects with minimum requirement of £120k in a two year period Sponsored research must form part of the WAAMMat core programme
Associate	 <u>Visibility</u> of all research outputs from the core projects Access to background IP needed to exploit WAAM Member of industry advisory group by invitation only 	 Contribution to the WAAMMat by for example Non-core research project sponsorship Smaller research project contribution

WAAMMat industry members

WAAMMat Full		Associate or collaborative		
<u>UK</u>	International	<u>UK</u>	International	
BAE Systems	Lockheed Martin	CCFE	Volvo Trucks	
Global robots	NEIMM	Delcam	Constellium	
DSTL	UTRC	Airbus Group	Fanuc	
Glen Almond	FMC	PWP	Air Products	
	Linde Gases	AWE	EWM	
	Otto Fuchs	Technical arc	Fronius	
		Thales	Select Arc	
		Weir	Bekaert	
		Norman Foster & P		
<u>In discussion</u>				
3D systems	Roxel	Boeing	Northrop Gruman	
Keppel	Air Liquid			

WAAM Basic System and IP

WAAM process procedure

CAD model
modification to
preforms

Path planning and post-processing to robot/ CNC programme

Process monitoring and control

WAAM Commercialisation – WAAM Systems and Services (WSS)

Potential WAAM systems under discussion

Туре	System	Functionality	Approximate Sale Value	Likely sector
A	Very low cost CNC	 Cheap analogue power source Low cost CNC Limited software functionality Limited build volume 	£10k - £30k	3D printing, enthusiasts, education
В	Low cost-high end robot + digital power source	 Al/Steels/Inconel/ Etc GMAW Simple parts, shapes and features Medium software functionality (maybe bespoke) 	£60k – £300k Hardware typical: £120k Software depending on functionality can cost up to £100k	General engineering, oil & gas, defence,
C1	High cost-high end robotics system (1 or more robots)	 Plasma based including Ti 1 or more robots Multiple processes - Integrated cold work + machining + metrology + NDT High software functionality 	£200k – £600k For 2 robots: £250k and includes machining heads and tool changers	Aerospace, high value manufacturing, energy, defence, repair
C2	Medium cost CNC based system	 Limited build volume (1 m³) Limited functionality Plasma based including Ti High software functionality 	£250k – £750k	Aerospace, high value manufacturing
D	High cost-high end CNC (robotic + CNC)	 Integrated cold work + machining NDT + metrology All materials incl. titanium High software functionality 	£0.5 – £2 million	Aerospace